Continuous Removal of Heavy Metals by the Lime Sulfurated Solution (Calcium Polysulfide) Process

Toshiro Aratani,* Shigeki Yasuhara,† Hitoshi Matoba^{††} and Takeo Yano

Department of Chemical Engineering, College of Engineering, University of Osaka Prefecture, Mozu-Ume, Sakai, Osaka 591 (Received July 1, 1978)

A continuous wastewater treatment system was developed for the Lime Sulfurated Solution Process which had already been tested in a batch, stirred tank and ascertained to be an effective chemical precipitation process. The removability of heavy metals was investigated with the continuous treatment system, consisting of a plant composed of H₂S desorber, reactor, thickener, sand filter, and H₂S desorber. The sulfide ion dissolved in treated water was desorbed as H₂S by a mixed gas of air and CO₂ and recycled in the reactor to precipitate heavy metals. It has been found that: (1) by the recycling use of H₂S, the continuous treatment system can remove heavy metals with less coagulant than in the batch, stirred vessel, (2) desorption of the dissolved sulfide ion by the mixed gas decreases the sulfide ion concentration in the treated water below 0.2 ppb, and (3) the conditions for the removal of heavy metals can be detected immediately by a sulfide ion electrode meter.

The development of a continuous processing system is of great practical importance to economically treat wastewater. In previous work,1-3) an effective heavy metal removal process, i.e., the CaS_x process, which utilized the lime sulfurated solution as a single coagulant, had been proposed and investigated kinetically, 1) for the removal condition for heavy metals,2) and the simultaneous removal of heavy metal, phosphate, and COD substances.³⁾ These investigations had, however, been conducted in a batch, stirred vessel. On the engineering scale, i.g., the wastewater treatment plant, continuous operation has been desirable, since continuous processing reduces the operating costs. It is, therefore, necessary to devise a suitable continuous processing system for the CaS_x process. The removal of heavy metals from the system also needs investigation.

According to a previous work,¹⁾ reaction scheme for the CaS_x process is represented by Eqs. 1 to 4.

$$\operatorname{CaS}_{x} + 3/2 \operatorname{O}_{2} \longrightarrow \operatorname{CaS}_{2} \operatorname{O}_{3} + (x-2) \operatorname{S}_{7}$$
 (1)

$$CaS_x + CO_2 + H_2O \longrightarrow CaCO_3 + H_2S + (x-1)S,$$
 (2)

$$M^{2+} + CaS_2O_3 + H_2O \longrightarrow MS + CaSO_4 + 2H^+,$$
 (3)

$$M^{2+} + H_2S \longrightarrow MS + 2H^+.$$
 (4)

In the batch operation, the H₂S liberated by Eq. 2 is partly lost to the gas (air or CO₂) blown into the water to decompose the coagulant (CaS_x),²⁾ and so an amount of coagulant, more than the stoichiometric amount calculated from Eqs. 1 to 4 is required. In the present study, a continuous treatment system suited to the CaS_x process was realized on the bench scale. The plant was devised to recycle the H₂S in Eq. 2. In the plant, the H₂S liberated was scrubbed by the wastewater, and the dissolved sulfide ion recovered as H₂S from the treated water and re-used to precipitate heavy metals. The efficiency of the H₂S recycling plant was investigated with regard to the removal of heavy metals and the recycling of H₂S. The desorption of the dissolved sulfide ion from the treated water was

also investigated.

Experimental

Continuous Processing Plant. Figure 1 shows the total system for the continuous CaS_x process. Simulated wastewater containing heavy metal was continuously fed to the top of the reactor. The reactor was made of a multistage vibrating disc column (MVDC) consisting of 15 stages (100 mm in height pet stage and 100 mm in inner diameter). The MVDC was used as the reactor, since it had excellent gas-liquid contacting ability even in the presence of suspended solid particles.4) The coagulant, CaS_x solution was continuously injected into the 7th stage of the MVDC reactor. At the upstream stages from the injection point (1st to 7th stage), H₂S gas generated at the downstream stages (8th to 15th stage) was scrubbed by the wastewater and caught on reacting with the heavy metals in the wastewater. The CaS_x decomposed when it came into contact with the gas introduced from the bottom of the reactor. The precipitation of heavy metals by the decomposed CaS_x proceeded mainly at the downstream stages. The suspended solid particles were sedimented in the thickener of 300 mm both in diameter and height. The supernatant liquid was further clarified by a sand filter (150 mm diameter and 200 mm depth), packed with 120 mesh silica sand of 100 mm thickness. The clarified water was stripped of dissolved sulfide ions in the desorber, where the clarified water was contacted in countercurrent with the gas blown for the CaS_x decomposition. The gas used for the desorption was a mixture of air and CO2 at predetermined volume ratio. The effluent water (treated water) from the desorber was removed as regards heavy metals and sulfide ions. The desorber was made up of an irrigated packed bed with 1/2" Rasching ring.5) The bed had a diameter of 150 mm and a height of 1 m. Air, according to a previous paper,2) requires 60 to 90 min to decompose the CaS_x solution. The long processing time in the batch operation was known to require a large volume of the reactor for continuous operation. A mixed gas of air and CO2 at various volume ratios was tested to determine the optimum conditions for heavy metal precipitation. The exit gas from the H₂S desorber was blown into the bottom of the reactor. and with this flow of gas, the H2S, which was recovered by blowing gas into the desorber, was re-used to precipitate the heavy metals in the reactor. The other gas exiting from the top of the reactor was removed perfectly for H₂S, at the

[†] Present address: Matsushita Electric Works Co., Ltd., Kitashinkai, Yokkaichi 510.

^{††} Present address: Ataka Kogyo Co., Ltd., Sueyoshibashi, Minami-ku, Osaka, 542.

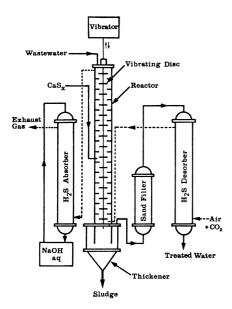


Fig. 1. Continuous heavy metal treatment system for the CaS_x process.

 $\rm H_2S$ absorber (the same dimension of irrigated packed bed as the $\rm H_2S$ desorber was used). As the absorbing liquor, 5% NaOH aqueous solution was used.

The simulated wastewater was prepared Method. by dissolving the heavy metal nitrates into ordinary water, and stored in a tank (500 dm³). The simulated wastewater was not temperature controlled, since the removal of heavy metals with the CaS_x process had already been found to be not severely affected by temperature.2) First, the whole space of the plant, except the absorber and desorber, was filled with ordinary water. Continuous operation was started by the injection of the coagulant (CaS_x solution), followed by blowing of the gas for the CaS_x decomposition. Finally, the simulated wastewater was introduced. Samples were taken at predetermined time intervals from the outlets of the reactor, thickener, sand filter, and desorber. The samples from the reactor and thickener were filtered by membranes of various pore sizes, and the heavy metal concentrations were determined on an atomic absorption spectrophotometer. Samples from the sand filter and the desorber were directly determined for heavy metal concentrations. The sulfide ion concentration was measured by an ion meter with sulfide ion electrodes (Orion Research Inco., Model 94-16 and 90-02). Since the pH of the sample affects the detected sulfide ion concentration, the pH's of the samples were adjusted by adding a portion of 2 M-NaOH to give a pH of 10.0. The ion meter was calibrated with Na₂S of known concentration at pH=10.0. The flow rates of the wastewater and the blowing gas were set at 500 cm³/min and 14 dm³/min respectively. Liquid hold-up's in the reactor, thickner, sand filter, and desorber were measured to be 20, 20, 5, and 1 dm³, respectively. With the base of these flow rates, the retention times of the reactor, thickener, sand filter, and desorber were calculated, respectively, as 40, 40, 10, and 2 min (the sum total was 92 min). The vibrating frequency of the disc in the MVDC reactor was set at 1.5 Hz with an amplitude of 19 mm, that is, at a vibrating speed of 2.85 cm/s, effective for the fine dispersion of the gas.4)

Results and Discussion

The preliminary investigation was with simulated

wastewater contaminated solely with Cd2+. Figure 2 shows the change in Cd²⁺ concentration in the treated water from the start of the operation. Approximately four times the total retention time (92 min \times 4=368 min=6 h) was found sufficient for the steady state to be attained. In Fig. 3, the steady state concentration of Cd2+ has been plotted against the CO2 vol % to air of the blowing gas. 8.5 vol % of CO2 was found to be the optimum condition for the removal of Cd2+, when $R_{\rm m}$ (the mole ratio of sulfur in the injected CaS_x per Cd2+ in the simulated wastewater) was 10 or 15, for C_{in} (the inlet concentration of Cd^{2+})=75 ppm. Consequently, the blowing gas containing 8.5 vol % of CO₂ was utilized in the following experiments. Figure 4 shows the steady state concentration of Cd²⁺ in the treated water plotted against $R_{\rm m}$. The continuous plant can remove Cd^{2+} , even with $R_m = 5.0$ for $C_{\rm in} = 100$ ppm, *i.e.*, closely at the stoichiometric amount of the coagulant $(R_{\rm m} = 4.7 \text{ to } 5.4).^2)$ This compares to the batch processing which needs more units of coagulant as shown by the dotted line in Fig. 4, for $C_0 = 100$ ppm. The economization of coagulant is mainly attributed to the recycling of H₂S.

Figure 5 shows the sulfide ion concentration detected by the ion meter against $R_{\rm m}$. The keys in Fig. 5, *i.e.*, $R_{\rm o}$, $T_{\rm o}$, and O indicate the samples taken from the reactor, thickener, and desorber, respectively. The treated water (key: O) was found to be desorbed as

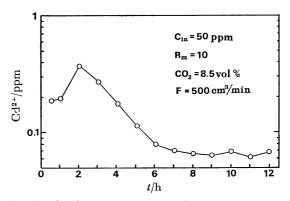


Fig. 2. Attainment to the steady state concentration with the continuous processing of Cd²⁺.

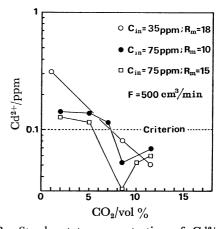


Fig. 3. Steady state concentration of Cd²⁺ vs. CO₂ vol % in the blowing gas.

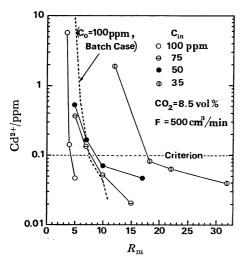


Fig. 4. Steady state concentration of Cd^{2+} vs. $R_{\rm m}$.

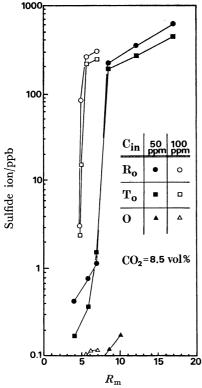


Fig. 5. Detected sulfide ion concentration by ion meter $vs. R_{\rm m}$. $R_{\rm o}$: reactor outlet, $T_{\rm o}$: thickener outlet, O: desorber outlet.

to have the sulfide ion concentration below 0.2 ppb. In water, H_2S is known to dissociate as shown by Eqs. 5 and 6, with dissociation constants of $K_1=[H^+][HS^-]/[H_2S]_{aq}=10^{-7.1}$ and $K_2=[H^+][S^{2-}]/[HS^-]=10^{-12.4}$ at 20 °C.⁶⁾

$$(H_2S)_{aq} \stackrel{K_1}{\Longleftrightarrow} HS^- + H^+,$$
 (5)

$$HS^{-} \stackrel{K_2}{\Longrightarrow} S^{2-} + H^{+}. \tag{6}$$

From Eqs. 5 and 6, the mole fractions of $(H_2S)_{aq}$, HS-, and S²⁻ are represented as functions of pH;

$$[\mathbf{H_2S}]_{aq}/C_{TDS} = 1/Q, \tag{7}$$

$$[HS^-]/C_{TDS} = 10^{-7.1+pH}/Q,$$
 (8)

$$[S^{2-}]/C_{TDS} = 10^{-19.5 + 2pH}/Q,$$
 (9)

where $Q = l + 10^{-7.1 + pH} + 10^{-19.5 + 2pH}$ and C_{TDS} is the total molar concentration of the dissolved sulfides $(C_{\text{TDS}} = [H_2S]_{\text{aq}} + [HS^-] + [S^{2-}]).$ The pH of the treated water with the blowing gas with 8.5 vol % of CO₂ was measured as 6.1. At pH=6.1, the mole fractions of $(H_2S)_{aq}$, HS⁻, and S²⁻ calculated from Eqs. 7, 8, and 9 are 0.909, 0.09, and 10^{-7} , respectively. As reported by Ohkawa and Sakai,7) H₂S in water can be desorbed better on the acidic side, since $(H_2S)_{aq}$ is more readily stripped than HS- and S2- which need to pass through the associating reaction to $(H_2S)_{aq}$ (Eqs. 5 and 6). 90.9% of C_{TDS} was found to be $(H_2S)_{\text{aq}}^{\text{q}}$ at pH=6.1; the low pH is a direct consequence of the acidity of the CO2 gas. Thus, the use of CO2 mixed gas for the CaS_x decomposition is desirable from the view point of H₂S desorption. The reason for the adjustment of the samples pH to 10.0 can be explained from Eqs. 7, 8, and 9 as follows. At pH=10.0, the mole fractions of $(H_2S)_{aq}$, HS^- , and S^{2-} are estimated as 0.001, 0.995, and 0.004, respectively. Therefore, the detected sulfide ion by a pair of electrodes can be said to be almost equal to C_{TDS} .

Figure 5 indicates that the $R_{\rm m}$ values crossing down the criterion for Cd²+ in Fig. 4 for $C_{\rm in}=50$ and 100 ppm agrees closely with the $R_{\rm m}$ values of Fig. 5 when the sulfide ion concentration shows steep increase. This good agreement of $R_{\rm m}$ values suggests that the optimum conditions for Cd²+ removal can be detected immediately by measuring the sulfide ion concentration at the outlet of the reactor.

The agglomeration of precipitates is known to be accelerated by the solid particle concentration, or the number of particles existing in the water. To increase the solid particle concentration in the reactor, the precipitated sludge was recycled from the thickener to the top of the reactor by a peristaltic pump at 30 cm³/min. Figure 6 shows a result of Cd²+ removal with and without the sludge recycle. The sludge recycle was found to be effective in reducing the amount of coagulant as can be seen from Fig. 7. In Fig. 7, the abscissa is converted from $R_{\rm m}$ in Fig. 4 to $C_{\rm s} = R_{\rm m} \times C_{\rm in}$, $C_{\rm s}$ being defined as the total sulfur atom concentration injected with the coagulant. Since the sulfur atoms added give rise to equivalent moles of metal sulfide and solid sulfur particles, as seen from Eqs. 1 to 4, $C_{\rm s}$ can be interpreted as the solid particle concentration generated by the CaS_x process. Since the Cd²⁺ concentration in Fig. 7 shows a single correlation with the solid particle concentration, C_s , the precipitation of heavy metals may depend solely on the solid particle concentration of the water. The recycling of the sludge will increase the solid particle concentration and may work effectively to precipitate heavy metals with less

Figure 8 shows the result of the continuous processing of wastewater simultaneously contaminated with 25 ppm of Cd^{2+} , 100 ppm of Pb^{2+} and Zn^{2+} , 40 ppm of Cu^{2+} , and 5 ppm of Cr(VI) and Hg^{2+} . Figure 8 indicates that $R_m = 5.0$, *i.e.*, nearly stoichiometric

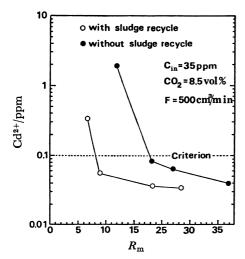


Fig. 6. Removal of Cd²⁺ with and without sludge recycle.

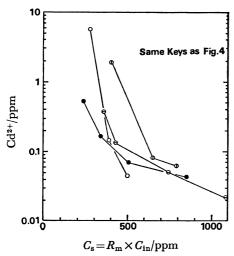


Fig. 7. Cd²⁺ vs. solids particle concentration or the sulfur atom concentration.

amount of coagulant is sufficient for the removal of contaminants. The removal concentrations are approximately proportional to the solubilities of the respective sulfides; 6.0×10^{-18} ppb for HgS, 1.62×10^{-19} ppb for CuS, 2.58×10^{-6} ppb for CdS, 2.0×10^{-6} ppb for PbS, 1.1×10^{-3} ppb for ZnS, and 8.3×10^{-2} ppb for Cr(OH)3 at pH=7.0.6 Cr(VI), Pb2+, and Zn2+ show deviations from the order of solubility. The batch processing data shows a higher residual concentration for Zn2+; the reason for this is not evident at present, but it is felt that the particle size of the precipitate may be concerned.

The samples taken from the outlets of the reactor and the thickener were filtered by membranes of various pore sizes, and the residual heavy metals concentrations were determined by atomic absorption, the results of which are shown in Fig. 9. Cr(VI) and Pb²⁺ are found to be finer in gain size. The growth of precipitates was shown to take place in the thickener. Figure 9 also shows that the precipitates grow to about 8 µm and this is thought sufficient for sand filtration.

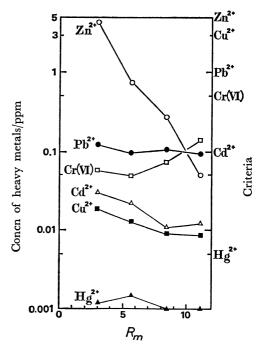


Fig. 8. Simultaneous removal of heavy metals by the continuous CaS_x process.

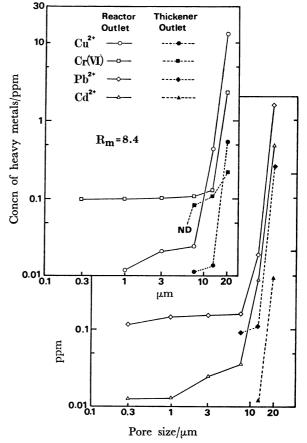


Fig. 9. Residual concentration of heavy metals vs. pore size of membrane filter.

Conclusion

Continuous CaS_x process study has lead to the following conclusions.

- 1) The amount of coagulant needed for the heavy metal removal can be lowered by recycling H₂S in the continuous operating plant.
- 2) The solid particle concentration in the reactor depends on the removability, which may explain the effective precipitation of Cd²⁺ by the recycling of the sludge.
- 3) The condition for removal of heavy metals can be detected by an electrode type ion meter. This simple method may enable the plant to be operated automatically with the least amount of coagulant.
- 4) The desorption of sulfide ions from the treated water can be effectively attained by the blowing gas or air containing CO_2 .

The authors wish to thank Assoc. Prof. Kei Miyanami of the University of Osaka Prefecture, Prof. Ryuzo Ito of Osaka University, Profs. Takataro Suda, Yoshiki Sanoh, and Mr. Kiyochika Yahikozawa of Shinshu University for their useful discussions.

The present work was partially supported by a

Grant-in-Aid for Developmental Scientific Research from the Ministry of Education, No. 185210.

References

- 1) K. Yahikozawa, T. Aratani, R. Ito, T. Suda, and T. Yano, Bull. Chem. Soc. Jpn., 51, 613 (1978).
- 2) T. Aratani, K. Yahikozawa, H. Matoba, S. Yasuhara, and T. Yano, Bull. Chem. Soc., Jpn., 51, 1755 (1978).
- 3) T. Aratani, Y. Nakata, H. Matoba, S. Yasuhara, and T. Yano, Bull. Chem. Soc. Jpn., 51, 2705 (1978).
- 4) K. Miyanami, K. Tojo, and T. Yano, J. Chem. Eng. Jpn., **6**, 518 (1973).
- 5) "Chemical Engineers' Handbook," 4th ed, ed by J. H. Perry, McGraw-Hill, New York (1963).
- 6) "Stability Constants of Metal-Ion Complexes," The Chemical Society, London (1964).
- 7) H. Ohkawa and N. Sakai, Presentation No. A302, the 40th Annual Meeting of the Soc. of Chem. Engr. of Japan, Nagoya, April 1975.
- 8) V. G. Levich, "Physicochemical Hydrodynamics," Prentice-Hall, N. J. (1962).